AUX	<u>(ILIARY</u>	/ INPUTS (SOLAR AND WOOD BOILERS)	(Part 1 of 2)	DHW-4		
Projec	et Title		Date			
calcul		must also be submitted with a DHW-1 water heating worksheet e Solar Credit, Passive Solar Credit or Wood Stove Boiler Credit anual.				
Activ	ve Solar (<u>Credit</u>				
1.		ergy Credit = $(action) \times (bcolor = 1a - bcolor = 1b)$ from DHW-1) $\times (0.80)$		=		
		olar Credit Notes: In equation 1, Solar Fraction = "FDHW" from parameters are fixed as listed in Table 6-8. Enter Line 1 on DHV				
Passi	ive Solar	<u>Credit</u>				
2.	Calculate	e temperature difference from SRCC data:				
	$T_{SRCC} =$	$ \begin{array}{l} [Q_{SAV} / (100 \; gal/day \; x \; 8.25 \; Btu/gal \hbox{-}^\circ F)] \; + \\ [Q_{CAP} \; / (V_t \; x \; 8.25 \; Btu/gal \hbox{-}^\circ F)] \end{array} $	=	:		
	Where:	$\begin{aligned} &Q_{SAV}\left(Btu/day\right) = from \ SRCC \ test \ results \\ &Q_{CAP}\left(Btu\right) = from \ SRCC \ test \ results \\ &V_{t} \ \left(gal\right) = total \ volume \ of \ solar \ storage \ tank \end{aligned}$				
3.	Calculate energy losses during SRCC test:					
	Q _{LOSS,SRC}	$_{C} = T_{SRCC} \times 16 \text{ hr/day x L Btu/hr-}^{\circ}\text{F}$	=	<u> </u>		
	Where:	16 = number of hours system is losing heat L (Heat Loss Coefficient, Btu/hr-°F from SRCC test results)				
4.	Calculate	e energy collected during the SRCC test:				
	Q _{TOTAL,SR}	$_{CC} = Q_{SAV} + Q_{LOSS,SRCC}$	=	<u> </u>		
5.	Adjust er	nergy collected to climate zone insolation values (see Table 6-9)				
	Q _{TOTAL,LO}	$_{CAL} = 1204 + [(Q_{TOTAL,SRCC} - 1204)/1500] \text{ x CZ insolation}$	=	<u> </u>		
6.	Determin	he $T_{TANK,LOCAL}$, average tank temperature delivered to the site:				
	T _{TANK,LOC}	$A_{AL} = (A_1 + A_2 + Q_{TOTAL,LOCAL}) / (A_3 + A_4)$	=	<u> </u>		
	Where:	$A_1 = (50 \text{ gal/day}) \times (8.25 \text{ Btu/gal-}^\circ\text{F}) \times (\text{CZ Water Main Temp})$ $A_2 = 16 \text{ hrs/day} \times L \times (\text{CZ Ambient Air Temp})$ $A_3 = (50 \text{ gal/day}) \times (8.25 \text{ Btu/gal-}^\circ\text{F})$ $A_4 = 16 \text{ hrs/day} \times L$ $CZ \text{ Water Main Temp and CZ Ambient Air Temp from Table}$				
7.	Determine energy losses at the site:					
	Q _{LOSS} , LOC	$c_{AL} = L \times 16 \text{ hrs } x \text{ (}T_{TANK, LOCAL} - CZ \text{ Ambient Air Temp)}$	=	<u> </u>		

Project Title

Date

Notes: This sheet must also be submitted with a DHW-1 water heating worksheet. Detailed instructions for calculating Active Solar Credit, Passive Solar Credit or Wood Stove Boiler Credit are contained in Section 6.3 of the *Residential Manual*.

Passive Solar Credit (cont.)

8. Determine energy used by electric resistance freeze protection devices:

ERP = (Freeze days/yr + 4) x (Collector Area) x
$$(0.5 \text{ kBtu /ft}^2 \text{-freeze day})$$

This is calculated only if the system uses electric resistance freeze protection.

9. Calculate system total annual energy contribution (mmBtu/yr); Enter on DHW-1, Line 1c:

$$\{(Q_{TOTAL,\,LOCAL}$$
 - $Q_{LOSS,\,LOCAL})$ x 0.365 - ERP} x 0.001 x (No. of Dwelling Units)

The credit calculated cannot exceed the larger of DHW-1, Line 1a - Line 1b or 3 mmBtu/yr.

Wood Stove Boiler Credit

10. Wood Stove Boiler Credit:

(Basic Energy Use) × (Credit Factor) DHW-1, Line 2a From Table 6-12 = _____

Table 1: Energy	Usea by	Freeze	Protection 1	Devices

Climate Zone	Freeze Degree Hours ¹	Climate Zone	Freeze Degree Hours ¹
1	44	9	1
2	624	10	57
3	3	11	417
4	157	12	324
5	74	13	195
6	0	14	2813
7	0	15	28
8	1	16	$8152-26153^2$

- 1. Freeze Degree Hours is defined as the annual sum-mation of hours that dry bulb temperature is less than or equal to 34° F from midnight to 10 am and from 6 pm to midnight.
- 2. The lower limit is for Mt. Shasta (3535' elevation) and the upper limit is for Tahoe City (6,230' elevation).

NOTE: Data in this table is used in item 8 of DWH-4 (Part 2 of 2).